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Consider the temperature field in a homogeneous medium near a spherical electrode heated by a constant current.
The temperature depends on the Joule heat liberated in the medium, in the electrode, and at the electrode-medium
interface (due to contact resistance). A problem of this kind is of interest in the andlysis of contact welding, electric
grounding devices, and certain other applications. Until now this problem has been solved only approximately, for spe-
cific numerical examples [1].

The change of temperature at the electrode-medium interface can.be used to determine the thermophysical prop-
erties of the medium {2, 31, The equations for the thermal conductivity and diffusivity de not, however, take into ac-
count the heat liberated inside the investigated sample, This can lead to considerable error, particularly in the case of
materials with relatively high resistivity (semiconductors).

The temperature at a distance r from the center of the electrode and time t from the instant of switching on the
current I is determined by the heat conduction equation
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Here 1, is the radius of the electrode, A and k are the thermal conductivity and diffusivity, respectively, g is the
electric resistivity of the medium, G is the total heat capacity of the electrode, and q is the power dissipated inside the
electrode and at its surface.

The thermal conductivity of the material is assumed to be high enough for the temperature gradient along the ra-
dius of the electrode to be neglected.

We shall solve Eq. (1) by the method of sources. Substituting
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Here Q is power dissipated in the medium, and ¢, c, are the specific heats per unit volume of the electrode and
of the medium, respectively.

We seek a solution to (4) in the form (cf, [4])
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Here f(—€) = ¢ (€) is a continuous continuation of the function f (€) on the negative semiaxis. Thus ¢ (0) = f(0) =
1/2A. We impose on the function ¢ three additional conditions,
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and, finally, we require that ¢ (&) be such that boundary condition (4) for u(x, ) is satisfied at x = 0. We introduce the
functional
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Then, in view of the additivity and uniformity of the functional P under the condition (7) imposed on the function

¥, we have
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As f (§) obviously satisfies condition (7), Eqs. (8) hold if ¥ is replaced by f or ¢.
Equations (7), (8) with boundary condition (4) at x = 0 and condition (6) yield
P(f)—~P@)—P(+¢)=—P2¢*+ 1P +9¢")
which holds if ¢ is a solution of the ordinary differential equation
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We now seek a solution ¢ (€) in the form
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In this case the function h(£) is a solution of the problem
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On can easily see that
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where o and oy are the roots of the equation 'yoc2 +oa+1=0(@ > 0), and the symbol A is defined by the expression
Ay (o) = y(ey ) — y(oip) for any function y (o).

Substituting (11) into (9) and (5), we obtain
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From this we obtain the final expression for the temperature field in a homogeneous medium heated by a constant

current
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Here ®(z) is the error function. The integrals on the right-hand side of (12) can easily be computed for specific
values of the parameters, and the numerical integration converges rapidly due to the fast decrease of the integrand with
increasing &.

In applications one is often interested in the surface temperature of the electrode, i.e., in the value of the right-
hand side of (12) at r = ;. The expression for the temperature T(ry, t) at the surface of the electrode can be written in
simpler form
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Note that when Q = 0 (A = 0), Eq. (13) is identical with the expression for the temperature of a spherical probe,
used for measuring the thermophysical properties of dispersed materials [5].

In the limiting case t — «, Eq. (12) yields the steady-state temperature distribution
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In many cases it is sufficient to consider the nonsteady-state temperature for very short times and the final steady-
state temperature only. In these cases we use (13) to make an approximate calculation of T(x, 7) for 7 <« 1 and for 7 »
> 1, Thus,
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When the heat capacity of the electrode is small (e. g., a hollow sphere), fory « 7 « 1 we have
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The results obtained above can also be used to calculate the temperature field T*(r, t) when the cuirent has the
form of a square pulse of duration ty. In that case, in view of the additivity of the solutions of the heat conduction equa-
tion for constant sources,

T*(r, ) =T (r,t) — T (r,t —ty) for t>1¢,.
If, at the same time, kiy/r <« 1, then
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It is clear, further, that if the current is switched off after the steady state is reached, then the temperature field
T*(, t) will decay according to the law

T**l‘, t) = Tg —T ("’ t).

Finally, note that our calculation was made for the case when Aa = 0, which does not restrict the generality. For
when Ao.=0 (y = 1/4), the solution to problem (10) is the function cle‘xlg (1 + coE) and the form of (12) will change cor-
respondingly. But we can use the original form of (12) even in the case Aa = 0, merely by taking the limit oy — oty ~
— —2. Moreover, solution (12) also includes the case y = 0. In that case one should take the limit of (12) fory - 0,
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oy —> —1, oy —> —c, For simplicity, we shall write down the expression for u(x, r) for the case y = 0:
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In particular, at the surface of the electrode (x = 0) we have, wheny = 0,
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